SRS ADC

System Requirements Specification

Status: Draft

Author: automatically generated from the SiSy model

Table of contents

1	Purpose	2
	Overall description of the task	
	Functional requirements	
	Hardware requirements	
	Process requirements	
	Attachment	

1 Purpose

All elements of this project are parts of a course for the professional development of embedded systems. This Embedded Systems Engineering course is intended to develop a broad interdisciplinary understanding and knowledge of the participants as well as to develop practical skills for the realization of embedded systems.

The hardware platform for this course is the mySTM32 Board lite. It has a microcontroller of the STM32 family and all required input and output devices or add-ons.

2 Overall description of the task

A microcontroller application is to be developed in which the analog values are digitized by a potentiometer and sent to the PC.

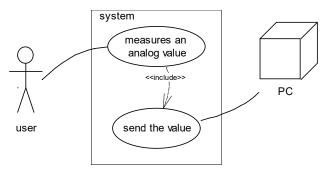


figure 1: uc: ADC tasks, user's perspective

List of top level requirements:

- system: send the value
- system: measures an analog value

3 Functional requirements

Initialize the UART on A9 / A10 with 19200 BAUD. Record analouge values with accuracy of ADC conversion of 8 bit. Send this value to the PC.

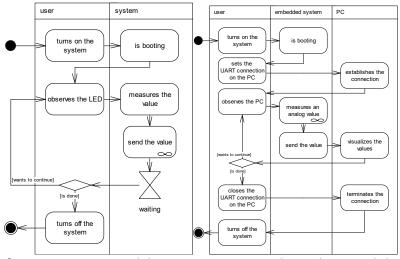


figure 2:activity models: measures an analog value, send the value

4 Hardware requirements

The hardware platform for this course is the mySTM32 Board lite. It has a microcontroller of the STM32 family and all required input and output devices or add-ons.

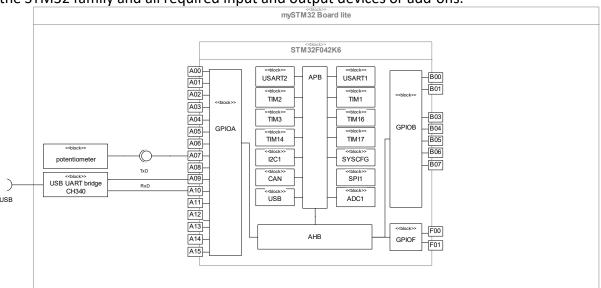


figure 3: ADC HRM

- connected USB
- connected pinA7 : potentiometer

5 Process requirements

A software process is the defined sequence of activities, the agreed rules, techniques, tools and the expected results of the activities for the production of software. Defined software processes ensure the plannability, controllability and quality of results in the manufacture of software. The following simple software process is agreed as a binding workflow for this course.

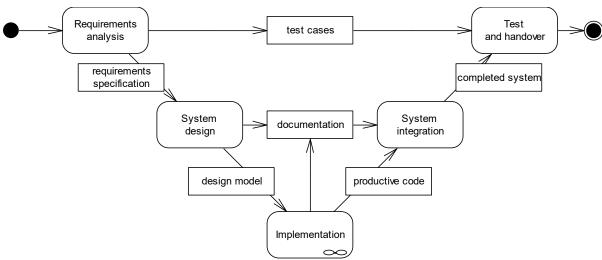


figure 4: act: lightweight model driven embedded software process

table 1: lightweight model driven embedded software process

Activity	Expected results
Requirements analysis	 User's perspective as use case diagram (as SysML / UML model) required functionalities as activity diagrams (as SysML / UML model) Test cases (as a document) HRM hardware resource model (as SysML model) SRS System Requirements Specification (as a document)
System design	 Class model of the concept level / architecture model (as UML model) if necessary, state model (as UML model) System documentation (as a document)
Implementation	 Class model of the realization (as UML model) Behavioral models of the realization (as UML model) Productive code (as a transferable format of the target platform, * .hex, * .elf) System documentation (as a document)
System integration	hardware software integrationthe completed system
Test and handover	the tested systemthe technical system documentation (as a document)the user documentation (as a document)

6 Attachment

List of figures

figure 1: uc: ADC tasks, user's perspectivefigure 2:activity models: measures an analog value, send the value	
figure 4: ADC HRM	
figure 5: act: lightweight model driven embedded software process	
I to the Challes	
List of tables	
table 1: lightweight model driven embedded software process	4